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LElTER TO THE EDITOR 

Transfer matrix algorithm for convection-biased diffusion 

Stiphane ROUX, Catalin Mitescut, Elisabeth Charlaix and Christophe 
Baudet 
Laboratoire d’Hydrodynamique et Mkcanique Physique, ESPCI, 10 Rue Vauquelin, 75231 
Pans Cedex 05, France 

Received 8 May 1986 

Abstract. We present a novel transfer matrix algorithm to study convection-biased diffusion 
on a lattice. Average and mean-square exit time on two examples are discussed, one with 
uniform permeability and another with a log-uniform distribution. Different regimes (pure 
convection, pure diffusion, intermediate stage) are clearly identified. 

Diffusion on random and fractal structures is a subject of high current interest, which 
has recently been extensively studied [l-61. Some light has been shed on the interplay 
of the stochastic nature of the diffusion process and the randomness of the underlying 
physical system. More recently, biased diffusion has motivated a renewal of this 
interest. Basically, two types of bias can be considered, each having its own field of 
relevance. 

(a) Uniform bias: the diffusion process is everywhere modified in the same way. 
This case is encountered when a uniform electric field is imposed on a domain where 
charged particles undergo Brownian motion, or in particle filtration where the gravity 
effects are important [7]. 

(b) Local hydrodynamic bias: the bias field depends on the disorder of the medium. 
This case is typical of dispersion problems where diffusion struggles against (or 
conspires with) convection, and consequently where different particles take different 
times to traverse the same distance. The latter is dictated by the hydrodynamics, which 
is a function of the detailed geometry and disorder. Other kinds of bias have been 
considered: random local bias where the diffusion process on a regular lattice is biased 
by a locally random field [3], chemical distance bias, which can be thought of as a 
simplification of the second case [8]; and so on. 

In this letter, we address case (b) with a novel, exact, transfer matrix algorithm 
(equally applicable to any of the above-mentioned cases). We obtain the average and 
mean-square exit time for dispersion on a square lattice over a wide range of Peclet 
number, choosing a square lattice with bonds either parallel or perpendicular to the 
mean flow direction, which displays diffusive and convective regimes whenever disorder 
is present, as well as the pathological ‘Wheatstone bridge’ behaviour [9] in the perfectly 
ordered case. Our approach is similar in its physical content to that of a recent paper 
by de Arcangelis et a1 [5] who have treated, using an iterative algorithm, the case of 
a square lattice with ‘45” flow’ which does not display the ‘pathological’ regime. 

t Permanent address: Department of Physics, Pomona College, Claremont, CA 91711, USA. 
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For each elementary bond of our lattice we want to solve the convection-diffusion 

( 1 )  

equation 

dC/dt  = aC/a t  + U aC/ax = D a2c/ax2 

which may also be written, defining a particle flux j(x,  t )  = UC - D aC/dx, in the form 
of a conservation law: aC/at+aj/ax = 0. Here C(x, t )  represents the concentration 
of tracer particles, U is the velocity of the fluid moving in the bond (in the positive x 
direction) and D represents a molecular diffusion constant. At each node, C(x, t )  is 
continuous and the total flux of particles is conserved. Taking the Laplace transform 
of ( 1 )  (assuming the channel originally empty), we obtain 

sC(X, S )  + U dC(x, s) /dx - D d2C(x, s ) /dx2=0  (2) 

where s is the usual complex frequency. The solution of this equation is C(x, s) = 
A eux+BeP", with (Y = [ U + ( U ' + ~ S D ) ~ ' ~ ] / ~ O ,  and p = [ u - ( u ' + ~ s D ) " ~ ] / ~ D .  The 
outward flux at the downstream end of the channel (x = I)  is j(1, t )  whereas at the 
upstream end (x = 0) the outward flux is -j(O, t ) .  The linearity of equation (2) and 
the particle conservation law imply a linear dependence of { - j (0 ,  s), j ( I ,  s)} on 
(C(0, s), C(1, s)). In other words, we obtain in the transform space s a set of linear, 
non-symmetric equations relating at each node the conserved currents j to the con- 
centrations C. This achieves the exact discretisation of the lattice. More precisely, 
this relation may be written in matrix form as 

with a = ( p  e@'-, e'')/(eu'-eP'), b=(a-p)/(e ' ' -eP') ,  c = ( a  - p )  e(a+P)'/(eU'-eP') 
and d = ( p  eu ' -a  eP')/(eu'--eP'). The ends of the channel can be thought of as sinks 
or sources of particles responding precisely to specified concentrations. A pulse 
response can be obtained by setting j ( 0 ,  s) = 1 (equivalent toj(0, t )  = 6( t ) )  and C(I, s) = 
0 (sink condition). This formulation can be compared to the usual case of electrical 
conduction where, if V is the potential and i the current, then for one bond of 
conductance g Kirchhoff's laws yield a coupled symmetric set of equations 

The matrix representation allows the use of a transfer matrix algorithm [lo] to 
solve the problem of dispersion for the entire lattice with any kind of boundary 
conditions at the external modes. For a given s, the calculations are almost as easy 
as in the case of electrical conduction (though the matrices involved are not symmetric). 
If we are interested in the real-time response, we can proceed with the calculation for 
a number of values of s, and evaluate numerically the inverse Laplace transform of 
the function obtained. (This may be achieved with a fast-Fourier-transform program 

Another result of significant interest is the calculation of various moments of the 
exit-time distribution. If r( t ) ,  the exit-flux response of the system, corresponding to 
a pulse (delta function) input flux, has a Laplace transform R ( s ) ,  then 

r 1 1 1 . 1  

( t N )  = Iff t N r ( t )  dt  = (-l)N dNR(s)/dsNI,_, ( 5 )  
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since R(0)  = 1 as a result of the conservation of particle flux. Thus, if we formally 
expand every quantity of interest up to the Nth order in s, and treat algebraically the 
different coefficients, then in one sweep through the lattice, our method yields the first 
N moments exactly without approximation. 

We have investigated the pulse response of a square lattice, the bonds of which 
are either parallel or perpendicular to the mean flow direction. The local flow velocity 
(U previously) is first computed assuming linear permeability (Darcy’s law). We 
consider the cases where the permeability of each bond is either constant (uniform 
throughout the whole lattice) or randomly distributed according to a log-uniform law. 
(The resultant velocities are proportional to the electrical currents that would flow in 
the bonds of an identical lattice with conductances corresponding to the above distribu- 
tion of permeabilities.) 

A dimensionless parameter, the so-called Peclet number Pe, can be introduced to 
describe the relative importance of convection and diffusion; ignoring any prefactors, 
it is dimensionally the ratio of a diffusion time (12/D) to a convection time (11 U ) :  

Pe = U l / D  ( 6 )  
where U is some characteristic velocity, 1 the length of the system and D a diffusion 
coefficient. It can be shown [ 121 that the proper way to define the characteristic velocity 
U,, in a macroscopic system is to perform a volume average (see below). 

(a) Homogeneous lattice. When the network is perfectly homogeneous the situation 
is classically ‘pathological’. The transport on the half of the bonds normal to the flow 
direction will always remain diffusive, as there is no convective current through them. 
We display in figures 1 and 2 the behaviour of the average exit time ( t )  and its mean 
square ( t 2 ) .  We can understand the different regimes exhibited as follows. 

A typical time for a particle to be convected through a channel of length 1, with a 
local velocity U, is T~,,,,= [ / U ,  whereas the diffusion time is Tdifi= 12/2D. In the 
discussion below, .7 will refer to time related to the whole ( n  x n )  lattice and T to 
elementary bonds. Therefore .7,,,, = n ~ ~ , , , ~  and ?diff= mrdiff, where m = n 2 +  ( n  - 1 ) 2  is 

Pe 

Figure 1. Log-log plot of the average exit time against macroscopic Peclet number for a 
homogeneous lattice. The curves corresponding to the disordered case (log-uniform distri- 
bution of permeabilities between 0.1 and 10) are indistinguishable on the scale of the figure. 
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Figure 2. Log-log plot of the mean-squared exit time times squared Peclet number against 
Peclet number. In the homogeneous system the curve increases monotonically (with slope 
1 )  for high Pe, whereas in the disordered case it reaches an asymptotic value. 

the number of bonds in the lattice whenever Fdiff is less than rcOnv, we can ignore 
convection. This holds when 

l / u  >> m12/2D. (7 )  

Recalling the global system variables, ‘effective’ velocity U,, = n’u/m and macroscopic 
Peclet number Pe = Ueffnl/D, equation (7) implies 

Pe<< ( U e f f / u ) ( 2 n / m )  = 2 n 3 / m 2 .  (8) 

For the 10 x 10 lattice of figures 1 and 2, equation (8) gives Pe << 0.06. In this regime, 
( t )  = m12/2D and ( t 2 )  = 5/3( z)~. The effective diffusion constant is the molecular one. 
Transition to another regime occurs at a Peclet number Pel when the convection and 
diffusion times for the whole lattice become comparable ( Fconv = Fdiff); then nl lu  = 
m12/2D, i.e. 

Pel = ( u e f f / u ) ( 2 n 2 / m )  = 2 n 4 / m 2 .  (9) 

A change of slope is clear in figures 1 and 2 for this crossover Peclet (Pel = 0.6).  
For Pe >> Pel, the average exit time ( t )  saturates and reaches the convective limit 
( t )  = nl/  U,, = ( n212/ D ) / P e .  The situation is not as simple for the second moment ( t ’ ) .  
In a qualitative way and for a high Peclet region, we can write any moment of the 
time distribution in the following form: a convective contribution for the whole network 
and a correction due to trapping in a diffusive arm. The probability of being trapped 
is 

E = (number of diffusive arms per current line)(7c,nv/~diff). (10) 

For a high Peclet number, E is much smaller than unity. This legitimises the approxima- 
tion, which means that we neglect multiple trapping. We can therefore write 

(11) ( t N >  = (FmnvIN( 1 - E )  + (Tdifi + . ~ , o n v ) ~ ~ .  
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We note that ?,,, and E vary as Pe-’ and Tdiff is independent of Pe. Keeping the 
dominant contributions in ( t )  and ( t ’ ) ,  we obtain 

( t )  = + T~~~ E - Pe-’ (12) 

( t 2 ) =  (&E) - Pe-’. (13) 

From (12) we see the correct scaling dependence as soon as Pe >> Pel .  The 
asymptotic form of ( t )  = nl/ U,, allows us to recover the expression for the effective 
velocity Ueff. If the first term, F,,,,, alone contributed, that would give an average 
only over the current-carrying part of the lattice. The trapping of particles in the dead 
arms modifies this ‘velocity’ and thanks to (10) we recover the volume average already 
quoted. 

The expansion of (1 1) up to second order in Pe-’ gives 

( t 2 )  = (Ti i f f  E )  + (&nv+ 2TconvTdiffE) 2: (Tiiff&) + (?$nv)* (14) 

This allows us to determine the ‘crossover’ Peclet number Pe2 for which ( t 2 )  changes 
from a Pe-’ to a Pe-’ dependence, as the solution of E(Pe,) = ?knv(Pe,)/&. (In our 
case here, Pel = 2000.) 

We have shown how the whole behaviour of ( t )  and ( 2 ’ )  is described for the 
homogeneous lattice. We can now turn to a less pathological situation in which a 
log-uniform distribution of permeabilities has been introduced. 

(b) Disordered lattice. In this case, every bond carries a non-zero current. Therefore 
we will reach a purely convective regime if Pe is high enough. We show data again 
for a l o x  10 lattice (though we have found similar behaviour for larger lattices as 
well). Even for a reasonably large distribution of permeabilities, G (log,,,G uniformly 
distributed on [-1, l]), the (r) data are almost indistinguishable from the previous 
case. The crossover Pel has to be evaluated with averaged quantities, but as the 
distribution of loglo G is centred around the same value as before, and thanks to the 
definition of a global Peclet Pe, the numerical value of Pel is unchanged. 

The second moment ( t 2 )  is also very similar to that of the homogeneous lattice as 
long as Pet< Pe,. This is understandable because only diffusion or first-moment 
convection times are required to describe these regions. But diffusion is the same in 
every bond and the first moment of the time distribution is relatively insensitive to 
disorder. 

Between Pe, and another Peclet number Pe3, we have a transition zone. Afterwards, 
( t 2 )  becomes proportional to Pe-’ showing a convective dispersion. The distribution 
of exit times is then dictated by the transit time along all different downstream paths. 
Pe, is determined by the slowest of these paths. If the distribution of currents is broad, 
this slowest path is then controlled by the weakest current in one bond. So Pe, is 
given by the condition 11 umin = 12/2D-i.e. Pe3 = 2 Ueff/ umin. 

For the examples show in figures 1 and 2, Pe3 = lo5. In the transition region, some 
bonds are diffusive. Equation (11) is still appropriate but now E depends on Pe in a 
different way. E takes into account the number of these diffusive traps and it varies 
with Pe, going to zero as Pe approaches Pe,. We will discuss the general problem of 
the disordered lattice at greater length in a forthcoming paper. 

We are grateful to E Guyon and J P H u h  for many fruitful discussions, to D Stauffer 
for a critical reading of the manuscript and to L de Arcangelis er a1 for communicating 
their results prior to publication. 
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